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Abstract. We genedze  the conventional spin-boson Hamiltonian by considering additional 
nonlinear coupling terms between system and heat bath. The equation of  motion for the reduced 
density mmix of the system is calculated in second-order perturbation theory in the tunnelling 
matrix element and the nonlinear coupling constant. We obtain an explicit expression for the 
Laplace transform of the function which describes the time evolution of the position of the 
system. Due to the influence of  the nonlinear coupling for temperarms much lower than the 
Debye temperature a transition from coherent to incoherent dynamics may take place. We fully 
describe this crossover by our expression. 

1. Introduction 

The low-temperature dynamics of a particle in a doublewell potential has been of 
considerable interest during the last decade. Often, the dynamics has been analysed in 
the framework of the spin-boson (SB) Hamiltonian~Geggett et a1 1987). The particle is 
described as a two-level system interacting with a heat bath which consists of  harmonic 
oscillators. In most cases the interaction has been chosen linear in the bath coordinates. 
The two levels correspond to the two lowest eigenstates of the system. Whereas for 
very asymmetric double-well potentials the dynamics is always incoherent, for symmetric 
potentials there exist a variety of possibilities, mainly dependent on the spectral density 
J ( o )  of the heat bath, the temperature T and the coupling strength r). If, for example, the 
particle is interacting with electrons, the spectral density of the heat bath corresponds to the 
so-called ohmic case (Kondo 1984. Wipf er a1 1987). It is well known that for this case 
a temperature-dependent coupling constant qo(T)  can be defined such that for q < (o(T) 
the dynamic is coherent and, for q > qo(T),  incoherent (Leggett et a1 1987, Weiss et a1 
1987). With increasing temperature, qo(T) approaches zero. In the incoherent regime, the 
temperature dependence of 'the jump rate possesses very interesting properties: in the limit 
of weak coupling, which is fulfilled in most experimental cases, the jump rate decreases 
with increasing temperature. The effect of the reduction of the rate with temperature has 
been observed, for example, in diffusion experiments of positively charged muons in copper 
for T c 10 K (Clawson et al 1983). For higher temperatures the interaction is dominated 
by phonons and the rate increas& again. 

In the superohmic case, which corresponds to coupling to acoustic phonons, the 
dynamics is coherent for all temperatures much lower than the Debye temperature (Leggett et 
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al 1987). This behaviour is independent of the coupling strength q. It somehow contradicts 
intuition that even a very strong coupling to the heat bath does not suppress the coherent 
processes. 

In contrast to the superohmic case in the ohmic case the spectral density J ( o )  does 
not vanish for w + 0. The interesting question arises in how far consideration of small 
additional interaction terms, which are quadratic in the bath coordinates, gives a superohmic 
bath features of an ohmic bath. This might be reasonable, because the spectral density 
of nonlinear processes possesses a non-vanishing contribution for low frequencies. This 
property is due to the possibility of a combined absorption and emission process of phonons 
of similar frequencies. 

This problem was first analysed by Kagan and co-workers (Kagan and Klinger 1974, 
Kagan and Prokofev 1986, 1989, 1990, Kagan 1991). They got the interesting result that 
even for small nonlinear interaction terms the dynamics in incoherent for temperatures much 
lower than the Debye temperature. Their recent calculations are based on methods known 
from the polaron theory (Holstein 1959, Mahan 1980). They obtain separate results for 
the incoherent and for the coherent regime. The crossover region is described by a simple 
interpolation formula. 

We present a full analysis of this problem in the sense that we obtain an expression 
describing the time evolution of the system for both the coherent and the incoherent regimes. 
Therefore we can fully describe the crossover between coherent and incoherent dynamics. 
In the two limiting cases we obtain the same results as Kagan and coworkers. We will show 
that for the crossover region our results significantly differ from those which are calculated 
on the basis of the interpolation formula. 

Recent diffusion experiments of muonium atoms in NaCl and KCI have been reported 
where nonlinear interaction terms seem to play a decisive role in explaining the temperature 
dependence of the diffusion rate (Kiefl et a1 1989, Kadono et al 1990). Therefore the 
analysis of this paper is not only of academic interest. 

The plan of this paper is as follows. In section 2 we describe the generalized SB 
Hamiltonian. In section 3 we first calculate the time evolution of the system without 
specifying the exact nature of the interaction between system and heat bath. We obtain an 
expression for the Laplace transform of the expectation value of the position of the system. 
Then we apply this general expression to the SB Hamiltonian defined in the previous section. 
In section 4 we discuss this expression and compare our results with those of Kagan and 
coworkers. 

2. The generalized spin-boson Hamiltonian 

Our generalized SB Hamiltonian of a double well potential interacting with a heat bath may 
be written in the following form 

A denotes the bare tunnelling matrix element, A the static asymmetry. The mode with 
the index s describes a symmetrically coupled mode which induces a fluctuating tunnelling 
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matrix element via the term 

exp(-Rs) = exp(-K5(b$ +b,)). (2) 

Especially in physical chemistry literature, such as a mode has often been introduced to 
explain the temperature dependence of rate processes (Siebrand et al 1983, 1984). The 
N modes with frequencies W! describe the heat bath. The linear and nonlinear coupling 
constants between system and heat bath_are given by the 7; and pi j .  In the so-called 
deformation potential approximation (Fetter and Walecka 1971), they can be chosen as 

vi = v& 

and 

(3) 

In these equations overall coupling constants q and p have been defined. WD denotes the 
Debye frequency. Introducing the variable 

which contains the influence of all oscillators of the heat bath we may conveniently write 
the SB Hamiltonian as 

(6) HSB = -uz + - exp(-R& + uz(q@ + p@’) + xliwib:b, +ho,bfb,. 

The two level system is expressed in the localized basis. Hence U:([ )  describes the time 
evolution of the position of the system: 

As usual we first perform a standard polaron-transform for getting rid of the possibly 
large linear coupling (Holstein 1959, Mahan 1980). Neglecting a cnnstant term we obtain 

(7) 

N A A 
2 2 i=l 

&B = Xlo;  + xZc+ + X3c- + Y l a z  + YZU+ f Y3U- + Y41 + ffB 
with 
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The brackets (.) denote the average over the heat bath. We have used the abbreviations 

and 

For reasons of simplicity we consider only symmetric potentials so that we choose 
x1 = 0. The interaction terms yi have been chosen such that (yi) = 0. The average values 
of the exponentials are given by (Leggett et a1 1987) 

and 

(exp(-&)) = exp($,2(2~(0~) + I)), 

We have defined the spectral bath functiori J ( o )  as 

v? N 
J p )  5 Zc --S(o - m i )  

R i=l 

and used the standard definition 

1 
exp(ghw) - 1. 

N(w) = 

In the case of an acoustic heat bath with a density of states 

0 2  

00 
p ( 0 )  E N? exp(-o/oo) (15) 

we obtain 

(16) 
0 3  

4 J(w)  = Cjh- exp(--w/oo) 

with a dimensionless coupling constant CJ = 2(q/Fz0~)~.  In the case of the tunnelling of 
hydrogen atoms in hydrogen bonds G is of the order of one (Skinner and Trommsdorff 
1988, Heuer and Haeberlen 1991). 

For reasons of simplicity we introduce the effective fluctuating tunnelling matrix element 

LLR = A(exp('ZS))(exp(--R)). (17) 

which is non-zero for a superohmic bath. 
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3. Calculation of the time evolution of the system 

In this section we derive an equation of motion for the reduced density matrix of a two-level 
system. Similar derivations without consideration of the nonlinear term can be found in 
the literature (Aslangul et a1 1985, Dattagupta et al 1989). The general Hamiltonian in 
equation (7) may be written as 

H = HA+ W + HB F Ho+ W. (18) 

HA describes the system, HB the heat bath, and W the interaction between system and heat 
bath. As H is Hermitian, the interaction terms yj have to fulfill the conditions y 1  = y:, 
Y4 = Y4'. YZ = Y;, Y3 = Y:. 

The time evolution of the whole density matrix p(t) may be described by the von- 
Neumann equation 

The reduced density matrix 
the influence of the heat bath is given by 

which describes the time evolution~of the system under 

pA(t) E @BP(t). (20) 

The equation of motion for pA(t) can be obtained using the projection operator formalism 
(Kubo and Toda 1987). Assuming a weak coupling between system and heat bath and 
neglecting a term which describes initial correlations between system and heat bath this 
equation reads 

t 

(21) 
1 

-'XApA(t) -l drM(T)PA(t - T ) .  A 

The main task is the calculation ofthe memory function M(r) .  The calculation of 
M ( r )  is most conveniently performed in the Liouvillian space which is defined by the 
basis ul = (1 + q)p, uz = (1 - uz)/2,  u 3  = U+, 54 = 5-. - In  this basis p ~ ( t )  can be 
written as 

After a straightforward calculation we obtain for the matrix elements of M 



7186 A Heuer 

We defined the correlation functions 

with 

yi ( r )  exp(i H~s/h)y;  exp(-iHB r/h). (24) 

Furthermore we have used 

e(z) G exp(Zilr/h). (25) 

Analogously ‘HA  may^ be written a s  

By Laplace-transforming both sides of equation (21) we obtain the linear system of 
equations 

LoA(V - PAW = --‘HA - M(h)  P A @ ) .  (27) 

We denote the Laplace transform of a specific function in the same way as the original 
function. 

As we have already mentioned we are mainly interested in the time development of 
the expectation value of U,@), which, in our basis, describes the time development of the 
position of the system. In OUT notation we may write 

[ A  1 

P ( t )  (U&)) = u,(t) - UZ( t ) .  (28) 
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After a tedious but The initial condition ( ~ ~ ( 0 ) )  = 1 corresponds to ai(0)~ = &. 
straightforward calculation we obtain for P(A) the following expression 

It can be easily checked that P(A)  is real for real A, which gives some confidence in 

For applying equation (29) to our system of interest we first have to calculate the 
the correctness of the above equations. 

correlation functions Aij(r).  We obtain 



7188 A Heuer 

= A42(r)  = -A34(5) = -A43(r). 

We have used 

f * ( w ,  r )  = cosfwz) coth (") - i sin(wr). (32) 

Fortunately it turns out for our case that, due to the symmetries among the correlation 
functions Ai,('), the resulting expression for P(h)  substantially simplifies. We obtain 

with 

d*(h) = 4AE(A) + 2 A g ( h )  f 2Ag(A) .  

(33) 

(34)  

The index re denotes the real part of the correlation functions. Equation (33) is the main 
result of this article. 

4. Discussion 

The time-dependence of P ( t )  can be obtained by calculation of the poles of P(A). We note 
that in the superohmic case the Aij(.h) may be substituted by Aij(h = 0) aeggett et al 
1987). The underlying reason is that the time scale of the dynamics of the system, which is 
proportional to @,, is slow compared with the time scale of the bath dynamics l/wo. For 
reasons of simplicity we will use the notation Aij  instead of AZ(h = 0) .  

For the discussion of P(h)  the following theorem turns out to be very useful 

Ai; . Ajj > A i .  (35) 
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The proof will be sketched in the appendix. 

equation (33) 
We first consider the limit of vanishing nonlinear interaction. Then we obtain from 

This expression has been already given by Aslangul et al (1985). From (35) follows 
A23 < Azz. 

For K$ = 0 and ~ B T  << hoD it may be easily verified that A 2  >> &/h (Leggett et a[ 
1987). In this limit the dynamics is coherent. Only for temperatures of the order of the 
Debye temperature Azz may increase beyond &/A,  turning the dynamics into incoherent 
motion. If the frequency of the symmetric mode ws is sufficiently small and the coupling 
constant K$ sufficiently large the jump rate can be strongly modified by the fact that during 
the jump process the symmetric mode may he in an excited state. The effective tunnelling 
matrix element of this jump process is strongly enhanced compared with the process in which 
the symmetric mode is in its ground state (Siebrand et al 1983, 1984, Suarez and Silbey 
1991). A similar effect can be observed for a single antisymmetric mode which is strongly 
coupled to the system (Heuer and Haeberlen 1991). Therefore, for a strongly fluctuating 
tunnelling matrix element, Azz increases much faster with temperature than without this 
coupling, so that the crossover to incoherent motion may take place at lower temperatures. 
For the incoherent regime we obtain P ( t )  = exp(-rlht) with 

rlj. = 4 A u .  (37) 

It can be easily checked that for the whole temperature range the term 2 A u  + 2A23 may be 
neglected except for the small temperature range for which A p  

After this brief repetition we additionally consider the influence of  the nonlinear 
interaction. All  turns out to be the most important term. From the definition of At1 
in equation (31) we directly obtain 

&F. 

For k*T << hoo this may be approximated by 

Hence, for low temperatures, AIL strongly increases with temperature. A l l  is a measure of 
the probability that the nonlinear interaction term simultaneously induces an absorption and 
emission process of the same frequency. 

For our further discussion let us define 

and 

r, = - 
4Alifi2’ 

(41) 
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We will first discuss the poles of P(A) and show afterwards they are approximately the 
same as the poles of P(A). 

For T + 0 A I  I may be neglected so that according to our above discussion we obtain 
a coherent behaviour with tunnelling frequency &/h. Now let us assume that for some 
temperature we have 4A22 << &/h and 2 A n  = &/h. Whereas the first inequality is 
in general fulfilled for kBTo << hwD (see our discussion above) the second inequality holds 
only if p exceeds a critical value PO. For a given TO this value may be easily calculated 
from equation (39). Then for T % TO A22 may be neglected and the poles are determined 
by 

A* = -[2All f (4A:l - i\i/h2)Ip]. (42) 

It is easy to see that for T -+ TO the frequency of the coherent motion decreases and 
the damping increases. Finally, for 2All = &/h we obtain two real poles. Hence, the 
crossover from coherent to incoherent motion has taken place. In the incoherent regime 
of the crossover region, P ( t )  is the sum of two exponentials. With further increasing 
temperature we may finally write 

.~ 1 F(A) = 
A + rnl + rS. (43) 

Hence, the rate constant of the incoherent motion has one contribution from the linear and 
one from the nonlinear interaction. For temperatures slightly above TO, the rate may be 
described by r.1 and therefore decreases with temperature. Very soon the term rli. will 
be dominant so that the rate increases again. The whole scenario is identical to that of a 
pmicle which is coupled to an electronic as well as to a phonon bath, which we briefly 
presented in the introduction. 

It turns out that for T << TO as well as for T >> TO our results are identical with the 
results of Kagan and coworkers. For T % they proposed an interpolation formula for 
the rate, which in our notation for the incoherent regime may be written as (Kagan and 
Prokofev 1990) 

In the limit All  + CO this turns out to be the correct expression for the rate. For the 
crossover temperature, hence for 2All  = &/h, equation (44) gives i= % &/3.4h, whereas 
the exact solution reads r = &/h. This shows that for T % TO the interpolation formula 
only has limited accuracy. 

It remains to justify that the additional terms in P(A)  do not change the above results. 
From (35) follows A:2 < A l l A z .  Furthermore we have A24 = 0. For T % TO we have 
2Al l  &/h and 4A22 << &/Ti so that 4A12 << &/h. Therefore the fourth term in the 
denominator of P(A)  can he neglected in this temperature range. Since A11 >> A22 2 A23 
also the term 2AZ2 + 2Au has no influence. Therefore for T % G, &A) is an excellent 
approximation of P(A). For higher temperatures the fourth term in the denominator of 
P(A)  may become more important than the third term. However, it turns out that in the 
high-temperature limit Au >> A:,/AII so that the fourth term may neglected compared with 
the second term. This can be easily checked numerically but can be also simply derived 
from the fact that in contrast to A n  and A l l  the value of Azz exponentially increases 
with temperature at high temperatures. Indeed, at high temperatures one may approximate 
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Azz cc exp(-E/kBT) with some activation energy E (Leggett et al 1987). Since we are 
mainly interested in the transition region we will not discuss the high-temperature behaviour 
any further. 

In summary, the nonlinear coupling terms play a decisive role in the description of 
a particle in a double-well potential which is coupled to a superohmic bath. We have 
presented an expression for the Laplace transform of P ( t )  which allows one to describe the 
dynamics for all temperatures and especially for the crossover regime between coherent and 
incoherent dynamics. 
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Appendix 

Let y .  and y" he two real operators in a countable Hilbert-space with Hamiltonian H .  The 
eigenvalues are denoted by Ei, the density matrix by p .  Our goal is to prove 

A,. ' A,, 2 A t , .  (45) 

Since the operators are real we can write 

where we have introduced the matrix elements of the operators with respect to the eigenbasis 
of H .  Let us formally define 

( X , ) i j  = ( y u h j ( P i c W z  - EjD"2. (47) 

Since we are interested only in even products of these expressions we do not have to wony 
about the square-root of the &distribution. Now A,, may be rewritten as 

Let c, be a vector which contains all elements of ( x , ) i j .  Then the original statement is 
equivalent to 

(49) 2 
lc1121cz12 2 IC1 . ,221 . 

This relation is trivially fulfilled. 
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